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Minimizing algebraic error
By Richard I. Hartley

GE Corporate Research and Development, 1 Research Circle,
Niskayuna, NY 12309, USA

This paper gives a widely applicable technique for solving many of the parameter
estimation problems encountered in geometric computer vision. A commonly used
approach in such parameter minimization is to minimize an algebraic error function.
It has generally been thought that minimizing a more meaningful geometric error
function gives preferable results. It is claimed in this paper, however, that minimizing
algebraic error will usually give excellent results, and in fact the main problem with
most algorithms minimizing algebraic distance is that they do not take account of
mathematical constraints that should be imposed on the quantity being estimated.
This paper gives an efficient method of minimizing algebraic distance while taking
account of the constraints. This provides new algorithms for the problems of resec-
tioning a pinhole camera, computing the fundamental matrix, and computing the
trifocal tensor.

Keywords: calibration and pose estimation; stereo and motion;
image sequence analysis; fundamental matrix; trifocal tensor

1. Introduction

For many problems related to camera calibration and scene reconstruction, linear
algorithms are known for solving for the entity required. In the sort of problem that
will be addressed in this paper, a set of data (such as point correspondences) is used
to construct a set of linear equations, and the solution of these equations, usually
in the least-squares sense, provides an estimate of the entity being computed. As
examples of such problems we have:

1. The direct linear transformation (DLT) algorithm for computing a camera ma-
trix given a set of points in space, and corresponding points in the image.
Provided at least six correspondences are given (more precisely 51

2 correspon-
dences), one can solve for the camera matrix.

2. Computation of the fundamental matrix. From 8-point correspondences ui ↔
u′i between two images one can construct the fundamental matrix using equa-
tions u′i

TFui = 0.

3. Computation of the trifocal tensor given a set of feature correspondences across
three views.

4. Computation of the quadrifocal tensor given a set of feature correspondences
across four views. This example will not be considered in this paper, however.

These linear algorithms have been found to give poor quality results on occasions
and much research has been expended in seeking more reliable, but complex methods.
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1176 R. I. Hartley

A previous paper (Hartley 1995a) showed that normalization of the data in a sys-
tematic manner will improve the results immeasurably, and such normalization must
be routinely carried out. Nevertheless, a common criticism of such linear algorithms
is that they ‘do not minimize the right thing’, and we really should be minimizing
‘geometric error’, which is related to the actual means of error occurrence. Although
this criticism is correct, it is the thesis of this paper that it really does not matter
very much whether we minimize algebraic or geometric error. What does make a sig-
nificant difference is whether one does or does not enforce the constraints imposed
by the geometry of the situation. Usually, one may be content with minimizing alge-
braic error, as long as one enforces the constraints. This leads to simpler and more
efficient algorithms than are possible when minimizing geometric error.

In these four examples, and many others, the linear algorithm will lead to a solution
that does not satisfy certain constraints that the estimated quantity must satisfy. In
the cases considered here, the constraints are the following.

1. The skew parameter of a camera matrix estimated using the DLT method
will not generally be zero. This constraint, meaning the pixels are rectangular,
should be enforced in cases where it is known to hold.

2. The fundamental matrix must satisfy a constraint detF = 0.

3. The trifocal tensor must satisfy eight nonlinear constraints. The form of these
constraints is not easily determined, but it is essential to constrain the tensor
to correspond to a valid set of camera matrices.

4. The quadrifocal tensor must satisfy 51 constraints, the nature of which is not
well understood.

These constraints are not in general linear constraints, and in general, it will be
necessary to resort to iterative techniques to enforce them. Since iterative techniques
are slow and potentially unstable, it is important to use them sparingly. Further,
the smaller the dimension of the minimization problem, the faster and generally
more stable the solution will be. In this paper an iterative algorithm is used to
solve the problems posed above. In each case the algorithms are based on a common
technique of data reduction, whereby the input data are condensed into a reduced
measurement matrix. The size of the iteration problem is then independent of the
size of the input set. In the case of estimation of the fundamental matrix, only three
homogeneous parameters are used to parametrize the minimization problem, whereas
for the trifocal tensor, just six parameters are used.

The problem of camera calibration solved using the DLT algorithm will be treated
first. It will be used to illustrate the techniques that apply to the other problems.

2. Computing the camera matrix

(a) The DLT algorithm

We consider a set of point correspondences xi ↔ ui between three-dimensional
(3D) points xi and image points ui, expressed in homogeneous coordinates. Our
problem is to compute a 3×4 matrix P such that Pxi = ui for each i. We begin with a
simple linear algorithm for determining P . Note that the equation Pxi = ui involves

Phil. Trans. R. Soc. Lond. A (1998)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


Algebraic error 1177

homogeneous vectors; thus ui and Pxi may differ by a non-zero scale factor. One
may, however, write the equation in terms of the vector cross product as ui×Pxi = 0.

If the jth row of the matrix P is denoted by pjT, then we may write Pxi =
(p1Txi,p

2Txi,p
3Txi)T. Writing ui = (ui, vi, wi)T, the cross product may then be

given explicitly as

ui × Pxi =

vip3Txi − wip2Txi
wip

1Txi − uip3Txi
uip

2Txi − vip1Txi

 .

Since pjTxi = xT
i p

j for j = 1, . . . , 3, this gives a set of three equations, in the entries
of P , which may be written in the form 0 −wixT

i vix
T
i

wix
T
i 0 −uixT

i

−vixT
i uix

T
i 0

p1

p2

p3

 = 0. (2.1)

Note that (p1,p2,p3)T which appears in (2.1) is a 12-vector made up of the entries
of the matrix P . Although there are three equations, only two of them are linearly
independent. Thus each point correspondence gives two equations in the entries of
P . One may choose to omit the third equation, or else include all three equations,
which may sometimes give a better conditioned set of equations. In future, we will
assume that only the first two equations are used, namely[

0 −wixT
i vix

T
i

wix
T
i 0 −uixT

i

]p1

p2

p3

 = 0. (2.2)

The equations (2.2) may be denoted by Mip = 0, where the vector p is a 12-
vector, corresponding to the 12 entries of P . The set of all equations derived from
several point correspondences may be written Mp = 0, where M is the matrix of
equation coefficients. This matrix M will be called the measurement matrix. The
obvious solution p = 0 is of no interest to us, so we seek a non-zero solution p.

(b) Scaling

One of the most important things to do in implementing an algorithm of this sort
is to prenormalize the data. This type of data normalization was discussed in Hartley
(1995a). Without this normalization, all these algorithms are guaranteed to perform
extremely poorly.

Data normalization is designed to improve the conditioning of the measurement
matrixM . The appropriate scaling is to translate all data points so that their centroid
is at the origin. Then the data should be scaled so that the average distance of any
data point from the origin is equal to

√
2 for image points and

√
3 for 3D points. The

algorithms are then carried out with the normalized data, and final transformations
are applied to the result to compensate for the normalizing transforms.

(c) Algebraic error

In the presence of noise, one cannot expect to obtain an exact solution to an
overconstrained set of equations of the form Mp = 0 such as those that arise in the
DLT method.
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1178 R. I. Hartley

The DLT algorithm instead finds the unit-norm vector p that minimizes ‖Mp‖.
The vector e = Mp is the error vector and it is this error vector that is minimized.
The solution is the unit singular vector corresponding to the smallest singular value
of M .

Define a vector (ûi, v̂i, ŵi)T = ûi = Px. Using this notation, we may write

Mip = ei =
(
viŵi − wiv̂i
wiûi − uiŵi

)
= 0. (2.3)

This vector is the algebraic error vector associated with the point correspondence
ui ↔ xi and the camera mapping P . Thus

dalg(ui, ûi)2 = (viŵi − wiv̂i)2 + (wiûi − uiŵi)2. (2.4)
Given several point correspondences, the quantity e = Mp is the algebraic error

vector for the complete set, and one sees that∑
i

dalg(ui, ûi)2 = ‖Mp‖2 = ‖e‖2. (2.5)

The main lesson that we want to keep from this discussion is:

Proposition 2.1. Given any set of 3D to image correspondences ui ↔ xi, let M
be the measurement matrix as in (2.2). For any camera matrix P the vector Mp is
the algebraic error vector, where p is the vector of entries of P .

(d) Geometric distance

Under the assumption that measurement error is confined to image measurements,
and an assumption of a Gaussian error model for the measurement of two-dimensional
(2D) image coordinates, the optimal estimate for the camera matrix P is the one
that minimizes the error function ∑

i

d(ui, ûi)2, (2.6)

where d(·, ·) represents Euclidean distance in the image. The quantity d(ui, ûi) is
known as the geometric distance between ui and ûi. Thus the error to be minimized
is the sum of squares of geometric distances between measured and projected points.

For points ui = (ui, vi, wi)T and ûi = (ûi, v̂i, ŵi)T, the geometric distance is

d(ui, ûi) = ((ui/wi − ûi/ŵi)2 + (vi/wi − ûi/ŵi)2)1/2

= dalg(ui, ûi)/wiŵi. (2.7)
Thus geometric distance is related to, but not quite the same as algebraic distance.
Nevertheless, it will turn out that minimizing algebraic distance gives very good
results in general.

It is well known (see, for instance, Kanatani 1996) that in a more general context,
the expected lower bound on the root mean squared residual error is equal to

Eopt = σ(1− d/N)1/2, (2.8)
where σ is the standard deviation of the input noise, N is the number of measure-
ments (in this case 2 × number of points), and d is the number of degrees of freedom
of the object being estimated, in this case the camera matrix P . Please note that
(2.8) represents the error in each of the two image coordinates. This represents the
performance of an optimal estimation technique, and we cannot do better.
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(e) The reduced measurement matrix

Let ui ↔ xi be a set of correspondences, and let M be the corresponding mea-
surement matrix. Let P be any camera matrix, and let p be the vector containing its
entries. The algebraic error vector corresponding to P is Mp, and its norm satisfies
‖Mp‖2 = pTMTMp.

In general, the matrix M may have a very large number of rows. It is possible to
replace M by a square matrix M̂ such that ‖Mp‖ = ‖M̂p‖ for any vector p. Such a
matrix M̂ is called a reduced measurement matrix. One way to do this is using the
singular value decomposition (SVD). Let M = UDV T be the SVD of M , and define
M̂ = DV T. Then

MTM = (V DUT)(UDV T) = (V D)(DV T) = M̂TM̂,

as required. Another way of obtaining M̂ is to use the QR decomposition M = QM̂ ,
where Q has orthogonal columns and M̂ is upper-triangular and square. This shows
the following result.

Theorem 2.2. Let ui ↔ xi be a set of n world-to-image correspondences. Let
M be the measurement matrix derived from the point correspondences. Let M̂ be a
reduced measurement matrix. Then, for any 3D to 2D projective transform P and
corresponding 3-vector p, one has∑

i

dalg(ui, Pxi)2 = ‖M̂p‖2.

In this way, all the information we need to keep about the set of matched points
ui ↔ xi is contained in the single 12×12 matrix M̂ . If we wish to minimize algebraic
error as P varies over some restricted set of transforms, then this is equivalent to
minimizing the norm of the 12-vector ‖M̂p‖.

(f ) Restricted camera mappings

The camera mapping expressed by a general 3D projective transformation is in
some respects too general. A non-singular 3×4 matrix P with centre at a finite point
may be decomposed as P = K[R | −Rt] where R is a 3× 3 rotation matrix and

K =

αu s u0
αv v0

1

 . (2.9)

The non-zero entries of K are geometrically meaningful quantities, the internal cal-
ibration parameters of P . A common assumption is that s = 0, while for a true
pinhole camera, αu = αv.

Given a set of world-to-image correspondences, one may wish to find a matrix P
that minimizes algebraic error, subject to a set of constraints on P . Usually, this will
require an iterative solution. For instance, suppose we wish to enforce the constraints
s = 0 and αu = αv. One can parametrize the camera matrix using the remaining
nine parameters (u0, v0, α, plus six parameters representing the orientation R and
location t of the camera). Let this set of parameters be denoted collectively by q.
Then, one has a map p = g(q), where p is as before the vector of entries of the matrix
P . According to theorem 2.2, minimizing algebraic error over all point matches is
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1180 R. I. Hartley

equivalent to minimizing ‖Mg(q)‖. Note that the mapping q 7→Mg(q) is a mapping
from R9 to R12. This is a simple parameter-minimization problem that may be solved
using the Levenberg–Marquardt (LM) method. The important point to note is the
following:

Given a set of n world-to-image correspondences, xi ↔ ui, the problem
of finding a constrained camera matrix P that minimizes the sum of
algebraic distances

∑
i dalg(ui, Pxi)2 reduces to the minimization of a

function R9 → R12, independent of the number n of correspondences.

If this problem is solved using the LM method, then an initial estimate of the pa-
rameters may be obtained by decomposing a camera matrix P found using the DLT
algorithm. A central step in the LM method is the computation of the derivative ma-
trix (Jacobian matrix) of the function being minimized, in this case Mg(q). Note that
∂Mg/∂q = M∂g/∂q. Thus, computation of the Jacobian reduces to computation of
the Jacobian matrix of g, and subsequent multiplication by M .

Minimization of ‖Mg(q)‖ takes place over all values of the parameters q. Note,
however, that if P = K[R | −Rt] with K as in (2.9), then P satisfies the condition
p2

31 + p2
32 + p2

3 = 1, since these entries are the same as the last row of the rotation
matrix R. Thus, minimizing Mg(q) will lead to a matrix P satisfying the constraints
s = 0 and αu = αv and scaled such that p2

31 + p2
32 + p2

3 = 1, and which in addition
minimizes the algebraic error for all point correspondences.

(g) Experimental evaluation

Experiments were carried out with synthetic data to evaluate the performance of
this algorithm. The data were created to simulate a standard 35 mm camera with a
35 mm focal length lens. A set of points were synthesized inside a sphere of radius
1 m, and the camera was located at a distance of about 2.5 m from the centre of the
sphere. The image is sampled so that the magnification factors are αu = αv = 1000.0,
the same in each direction. This corresponds to a pixel size of 35 µm for a 35 mm
camera.

Experiments were carried out to find the camera matrix with four different as-
sumptions on known camera parameters.

1. Zero skew: s = 0. The number of remaining degrees of freedom d for the camera
matrix is equal to 10.

2. The pixels are square: s = 0 and αu = αv. This corresponds to the situation for
a true pinhole camera where image coordinates are measured in a Euclidean
coordinate frame. In this case, d = 9.

3. In addition to the above assumptions, the principal point (u0, v0) is assumed
to be known. There remain d = 7 degrees of freedom.

4. The complete internal calibration matrix K in (2.9) is assumed to be known.
However, the pose of the camera is unknown. Thus d = 6.

To evaluate the performance of the algorithm, the result was compared with the
optimal estimate with different degrees of noise. Thus, Gaussian noise with a given
variance was added to the image coordinates of each point, and the camera matrix
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Figure 1. The residual error was RMS-averaged over 100 runs for each n = 6, . . . , 25, where n
is the number of points used to estimate the camera matrix. Four different levels of knowledge
of the internal camera matrix were tried, corresponding to the four different graphs. In each of
the graphs, the solid line represents the result of our iterative DLT algorithm, and the almost
identical dotted line is the optimal estimate. In all four graphs, these two lines are barely distin-
guishable. For comparison, the results of a further method are also plotted. In this method, the
camera matrix P is computed using the linear DLT algorithm, the complete calibration matrix
K in (2.9) is then computed using the QR decomposition, and the known internal parameters
are subsequently set to their known values. This method performs very poorly for small numbers
of points, lying well off the graph, and is markedly inferior to the optimal estimation method,
even for larger numbers of points.

was estimated. The residual error was then computed, that is the difference between
the measured and projected pixel. Since the residual error appeared to grow pro-
portionally to injected noise (at least for noise levels less than about 10 pixels), a
value of σ = 1 pixel was used in the experiments. For each level of noise σ, the
camera matrix was estimated 100 times with random noise. The residual error was
RMS-averaged over all 100 runs and compared to the optimal value given by (2.8).

Results of the experiments are shown in figure 1. The results show that minimizing
algebraic error gives an almost optimal estimate of the camera matrix. In fact, the
residual error is scarcely distinguishable from the optimal value. This is true in each
of the four calibration problem types tried.

3. Computation of the fundamental matrix

(a) The 8-point algorithm

We now turn to the computation of the fundamental matrix. It will turn out that
very similar methods apply to its computation as were used in the DLT algorithm.
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Given a set of correspondences ui ↔ u′i between two images, the fundamental
matrix is defined by the relation u′Ti Fui = 0 for all i. In the presence of noise, this
relation will not hold precisely, and so one seeks a least-squares solution. Note that
the equation u′Ti Fui = 0 is linear in the entries of F . From eight or more point
matches, one may solve for the entries of F by finding the least-squares solution to a
set of linear equations (Hartley 1995a). Let the set of equations be denoted by Mf =
0. The vector Mf has components equal to u′Ti Fui, and ‖Mf‖2 =

∑
i(u
′T
i Fui)

2.
Thus, in this case, as before with the DLT algorithm, Mf represents the algebraic
error vector. Matrix F is found by minimizing ‖Mf‖ subject to ‖f‖ = 1.

The fundamental matrix F must, however, satisfy a constraint detF = 0, and
this constraint will not generally be satisfied by the matrix F found by this linear
algorithm. One would therefore like to minimize the algebraic error ‖M f̂‖ over all
vectors f̂ corresponding to singular matrices F̂ .

In Hartley (1995a), the matrix F̂ was taken to be the closest singular matrix to
F under Frobenius norm, where F is the linear solution. This is not an especially
good way of proceeding, since it weights errors in each of the entries of F equally.
A preferable method is to proceed as with the DLT. One parametrizes the matrix
F̂ by a set of parameters q in such a way as to ensure it is singular. Then, letting
f̂ = g(q), one uses an iterative algorithm to minimize ‖Mg(q)‖. This is the general
scheme which will be followed, but there are details to be filled out, and a new twist
will arise, which allows a parametrization with only three parameters.

(b) Algebraic minimization

Consider the fundamental matrix F , which can be written as a product F = Q[e]×
where Q is a non-singular matrix, and e is the epipole in the first image. The symbol
[e]× represents the skew-symmetric 3 × 3 matrix such that [e]×v = e × v for any
vector v.

Suppose we wish to compute the fundamental matrix F of the form F = Q[e]×
that minimizes the algebraic error ‖Mf‖ subject to the condition ‖f‖ = 1. The
vector f is the 9-vector containing the entries of F . It has been seen that the 8-point
algorithm finds such an f , without the condition that F = Q[e]×. We now wish to
enforce that condition.

Let us assume for now that the epipole e is known. Later we will let e vary, but
for now it is fixed. The equation F = Q[e]× can be written in terms of the vectors f
and q, comprising the entries of F and Q as an equation f = Eq, where E is a 9× 9
matrix. Supposing that f and q contain the entries of the corresponding matrices in
row-major order, then it can be verified that E has the form

E =

[e]×
[e]×

[e]×

 . (3.1)

Now, our minimization problem is as follows: minimize ‖MEq‖ subject to the
condition ‖Eq‖ = 1.† This problem is solved as follows. Let the singular value
decomposition of E be E = UDV T. It is easily seen that the matrix E has rank
6, since each of the diagonal blocks has rank 2. It follows that D has six non-zero

† It does not do to minimize ‖MEq‖ subject to the condition ‖q‖ = 1, since a solution to this occurs
when q is a unit vector in the right nullspace of E. In this case, Eq = 0, and hence ‖MEq‖ = 0.
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diagonal entries. Let U ′ be the 9 × 6 matrix consisting of the first six columns of
U , and let V ′ consist of the first 6 columns of V and let D′ be the top-left 6 × 6
minor of D, containing the non-zero diagonal entries. The minimization problem then
becomes the following: minimize ‖MU ′D′V ′Tq‖ subject to ‖U ′D′V ′Tq‖ = 1. This
last condition is equivalent to ‖D′V ′Tq‖ = 1, since U ′ has orthogonal columns. Now,
writing q′ = D′V ′Tq, the problem becomes: minimize ‖MU ′q′‖ subject to ‖q′‖ = 1,
which is our standard minimization problem. The solution q′ is the singular vector
corresponding to the smallest singular value of MU ′. Subsequently, we can compute
f = Eq = U ′D′V ′Tq = U ′q′, and the algebraic error is Mf = MU ′q′. In this
way, we compute q′. If q is required as well, then it is easily obtained. Because E
is not a full rank matrix, there is not a unique solution for q from the equation
D′V ′Tq = q′. However, one solution for q is given by q = V ′D′−1q. To see this, one
verifies D′V ′Tq = D′V ′TV ′D′−1q = D′D′−1q = q as required.

The complete algorithm is:

Algorithm 3.1. Given the epipole e, find the fundamental matrix F of the form
F = Q[e]× that minimizes the algebraic error ‖Mf‖ subject to ‖f‖ = 1.

Solution.

1. Compute the SVD E = UDV T, where E is given in (3.1), and the non-zero
values of D appear first down the diagonal.

2. Let U ′ be the matrix comprising the first six columns of U , let V ′ consist of
the first six columns of V and D′ consist of the six first rows and columns of
D.

3. Find the unit vector q′ that minimizes ‖MU ′q′‖.
4. The required matrix F corresponds to the vector f = U ′q′, and the minimum

algebraic error is Mf .

5. A factorization of F = Q[e]× is obtained by computing the vector q = V ′D′−1q′
corresponding to Q.

(c) Iterative estimation

The algorithm of the last section gives a way of computing an algebraic error
vector Mf given a value for the epipole e. This mapping e 7→ Mf is a map from
R3 to R9. Note that the value of Mf is unaffected by scaling e. Starting from an
estimated value of e derived as the generator of the right nullspace of an initial
estimate of F , one may iterate to find the final F that minimizes algebraic error.
The initial estimate of F may be obtained from the 8-point algorithm, or any other
simple algorithm.

Note the advantage of this method of computing F is that the iterative part of the
algorithm consists of a very small parameter minimization problem, involving the
estimation of only three parameters. Despite this, the algorithm finds the fundamen-
tal matrix that minimizes the algebraic error for all matched points. The matched
points themselves do not come into the final iterative estimation.

Simplifying the computation. Because of the simple form of the matrix E, it is easy
to compute its SVD without having to resort to a full SVD algorithm. This may be
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Figure 2. The images used in the experiments.

important in the iterative algorithm to achieve maximum speed, since this SVD is
computed repeatedly during the minimization. As seen in (3.1), the matrix E has
a diagonal block-structure consisting of three blocks [e]×. The SVD consequently
has a corresponding block-structure. Specifically, if [e]× = ÛD̂V̂ ′, then the SVD of
E = diag([e]×, [e]×, [e]×) is E = UDV T, where U = diag(Û , Û , Û), and similarly for
D and V .

The SVD of [e]× itself can be computed easily as follows. Suppose that Û is
an orthogonal matrix such that eÛ = (0, 0, 1). Such a matrix Û is a Householder
transformation and is easily computed (Golub & Van Loan 1989). Then one sees
that [e]× = ±ÛZÛT = ±Û diag(1, 1, 0)ẐÛT = ±ÛD̂V̂ T, where

Z =

0 −1 0
1 0 0
0 0 0

 ; Ẑ =

0 −1 0
1 0 0
0 0 1

 .
This is easily verified by observing that both [e]× and ±ÛZÛT are skew-symmetric
matrices with the same nullspace, generated by e in each case. We are interested
in Û ′ consisting of the first two columns of Û . Turning now to the SVD of E =
diag([e]×, [e]×, [e]×), we see that U ′ = diag(Û ′, Û ′, Û ′). If we partition the 9 × 9
matrix M into blocks M = [M1,M2,M3], where each Mi has 3 columns, then one
computes that MU ′ = [M1Û

′,M2Û
′,M3Û

′]. Thus, the computation of MU ′ required
in algorithm 3.1 has two simple steps.

1. Compute the 3×3 Householder matrix Û such that eTÛ = (0, 0, 1), and let Û ′
comprise its first two columns.

2. Set MU ′ = [M1Û
′,M2Û

′,M3Û
′].

Phil. Trans. R. Soc. Lond. A (1998)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


Algebraic error 1185

(d) Experimental evaluation of the algorithm

A set of experiments were carried out similar to those in Hartley (1995a). One
image from each pair of images used is shown in figure 2. These images contain a
wide variation of measurement noise and placement of the epipoles. For each pair of
images, a number n of matched points were chosen and the fundamental matrix was
computed. The fundamental matrix computed was shown evaluated against the full
set of all matched points, and the residual error was computed. This experiment was
done 100 times for each value of n and each pair of images, and the average residual
error was plotted against n. This gives an idea of how the different algorithms behave
as the number of points is increased.

The results of these experiments are shown and explained in figure 3. They show
that minimizing algebraic error gives essentially indistinguishable results from min-
imizing the geometric error, but both perform better than the linear normalized 8-
point algorithm (Hartley 1995a). The optimal residual geometric error is computed
from (2.8) to be in this case

Eopt = σ

(
n− 7

4n

)1/2

.

4. Computation of the trifocal tensor

(a) The linear solution

The trifocal tensor (Hartley 1995b, 1997) relates the coordinates of points or lines
seen in three views in a similar way to that in which the fundamental matrix relates
points in two views.

The basic formula relates a point u in one image and a pair of lines λ′ and λ′′ in
the other two images. Provided there is a point x in space that maps to u in the
first image, and a point on the lines λ′ and λ′′ in the other two images, the following
identity is satisfied:

uiλ′jλ
′′
kT

jk
i = 0. (4.1)

Here we are using tensor notation, in which a repeated index appearing in covariant
(lower) and contravariant (upper) positions implies summation over the range of
indices (namely, 1, . . . , 3).

This equation may be used to generate equations given either point or line corre-
spondences across three images. In the case of a line correspondence, λ ↔ λ′ ↔ λ′′
one selects two points u0 and u1 on the line λ, and for each of these points one obtains
an equation of the form (4.1). In the case of a point correspondence u ↔ u′ ↔ u′′
one selects any lines λ′ and λ′′ passing through u′ and u′′, respectively. Then (4.1)
provides one equation. Four equations are generated from a single 3-viewpoint corre-
spondence by choosing two lines through each of u′ and u′′, each pair of lines giving
rise to a single equation.

The equations (4.1) give rise to a set of equations of the form Mt = 0 in the 27
entries of the trifocal tensor. From these equations, one may solve for the entries of
the tensor. As before, for any tensor T jki the value of Mt is the algebraic error vector
associated with the input data.
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Figure 3. Results of the experimental evaluation of the algorithms. In each case, three methods
of computing F were compared. In each graph, the top (solid) line shows the results of the
normalized 8-point algorithm. Also shown are the results of minimizing geometric error and al-
gebraic error, using the algorithm of this paper. In most cases, the result of minimizing algebraic
error is almost indistinguishable from minimizing geometric error. Both are noticeably better
than the non-iterative 8-point algorithm, although that algorithm gives reasonable results.

Consider the analogy with the 8-point algorithm for computing the fundamental
matrix in the two-view case. The fundamental matrix has a constraint detF = 0 that
is not in general precisely satisfied by the solution found from the linear algorithm.
In the case of the trifocal tensor, there are 27 entries in the tensor, but the camera
geometry that it encodes has only 18 degrees of freedom. This means that the trifocal
tensor must satisfy eight constraints, apart from scale ambiguity to make up the 27
degrees of freedom of a general 3× 3× 3 tensor. The exact form of these constraints
is not known precisely. Nevertheless, they must be enforced in order that the trifocal
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tensor should be well behaved. It will now be shown how this can be done, while
minimizing algebraic error.

(b) Enforcing the constraints

We denote the camera matrices P ′ and P ′′ by aij and bij , respectively, instead of
by p′ij and p′′ij . Thus, the three camera matrices P , P ′ and P ′′ may be written in the
form P = [I | 0], P ′ = [aij ] and P ′′ = [bij ].

In this notation, the formula for the entries of the trifocal tensor is (Hartley 1997)

T jki = aji b
k
4 − aj4bki . (4.2)

Our task will be to compute a trifocal tensor T jki of this form from a set of image
correspondences. The tensor computed will minimize the algebraic error associated
with the input data. The algorithm is quite similar to the one given for computation
of the fundamental matrix. Just as with the fundamental matrix, the first step is the
computation of the epipoles.

Retrieving the epipoles. Consider the task of retrieving the epipoles from the tri-
focal tensor. If the first camera has matrix P = [I | 0], then the epipoles e21 and e31
are the last columns ai4 and bi4 of the two camera matrices P ′ = [aij ] and P ′′ = [bij ], re-
spectively. These two epipoles may easily be computed from the tensor T jki according
to the following proposition (Hartley 1995b).

Proposition 4.1. For each i = 1, . . . , 3, the matrix T ··i is singular. Furthermore,
the generators of the three left nullspaces have a common perpendicular, the epipole
e21. Similarly, epipole e31 is the common perpendicular of the right nullspaces of the
three matrices T ··i .

This proposition translates easily into an algorithm for computing the epipoles
(Hartley 1995b, 1997). This algorithm may be applied to the tensor T jki obtained
from the linear algorithm to obtain a reasonable approximation for the epipoles.

Constrained minimization. From the form (4.2) of the trifocal tensor, it may be
seen that once the epipoles e21 = aj4 and e31 = bk4 are known, the trifocal tensor may
be expressed linearly in terms of the remaining entries of the matrices [aji ] and [bki ].
We may write t = Ha where a is the vector of the remaining entries aij and bij , t is
the vector of entries of the trifocal tensor, and H is the linear relationship expressed
by (4.2). We wish to minimize the algebraic error ‖Mt‖ = ‖MHa‖ over all choices
of a constrained such that ‖t‖ = ‖Ha‖ = 1.

Writing t̂ = Ha, where a is the solution vector, we see that t̂ minimizes algebraic
error ‖M t̂‖ subject to the condition that T jki is of the correct form (4.2), for the
given choice of epipoles.

(c) Iterative solution

The two epipoles used to compute a correct constrained tensor T jki are computed
using the estimate of T jki obtained from the linear algorithm. Analogous to the
case of the fundamental matrix, the mapping (e21,e31) 7→M t̂ = MHa is a mapping
R6 → R27. An application of the LM algorithm to optimize the choice of the epipoles
will result in an optimal (in terms of algebraic error) estimate of the trifocal tensor.
Note that the iteration problem is of modest size, since only six parameters, the
homogeneous coordinates of the epipoles, are involved in the iteration problem.
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Figure 4. The residual error RMS-averaged over 100 runs is plotted against the number of points.
Note that these plots are different from the plots for the DLT algorithm in that the horizontal
axis represents the noise level, not the number of points as in the DLT case. The three plots
are for 10, 15 and 20 points. Each graph contains three curves. The top curve is the result
of the algebraic error minimization, whereas the lower two curves, actually indistinguishable
in the graphs, represent the theoretical minimum error, and the error obtained by iteration to
minimize geometric error, using the algebraic minimization as a starting point (Hartley 1995b,
1997). Note that the residual errors are almost exactly proportional to added noise. We learn
two things from this. Minimization of the algebraic error achieves residual errors within about
15% of the optimal and using this estimate as a starting point for minimizing geometric error
achieves a virtually optimal estimate. These results are notably better than results obtained in
Hartley (1995b).

This contrasts with an iterative estimation of the optimal trifocal tensor in terms
of geometric error. This latter problem would require estimating the three camera
parameters, plus the coordinates of all the points, a large estimation problem.

(d) Experimental results

Once more, the iterative algorithm for computing the trifocal tensor was tested
with synthetic data. The configuration of the points and cameras was similar to that
used for the DLT algorithm, but in this case there were three cameras aimed at the
point set from random angles. Data sets of 10, 15 and 20 points were used to test
the algorithm. Residual errors were compared with the optimal values of the residual
errors, given by the formula (2.8). In this case, if n is the number of points, then the
number of measurements is N = 6n, and the number of degrees of freedom in the
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fitting is d = 18 + 3n, where 18 represents the number of degrees of freedom of the
three cameras (less 15 to account for projective ambiguity) and 3n represents the
number of degrees of freedom of n points in space. Thus, in this case,

Eopt = σ

(
3n− 18

6n

)1/2

.

The results are shown in figure 4.

5. Conclusion

Experimental evidence backs up the assertion that minimizing algebraic distance
can usually give good results at a fraction of the computation cost associated with
minimizing geometric distance. The great advantage of the method for minimizing
algebraic error given in this paper is that even for problems that need an iterative
solution the size of the iteration problem is very small. Consequently, the iteration
is very rapid and there is reduced risk of falling into a local minimum, or otherwise
failing to converge.

The method has been illustrated by applying it to three problems. For the com-
putation of the fundamental matrix, iteration is over only three homogeneous pa-
rameters. For the trifocal tensor, iteration is over six parameters. This leads to more
efficient methods than have been known.

The general technique is applicable to problems other than those treated here. It
may be applied to the computation of the quadrifocal tensor and also to estimation of
projective transformations between two- or three-dimensional point sets. In this latter
problem, iteration is necessary if one restricts the class of available transformations
to a subgroup of the projective group, such as planar homologies (used in Zisserman
(1995)), or conjugates of rotations (Hartley 1994).
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Discussion

P. H. S. Torr (Department of Engineering Science, University of Oxford, UK ).
Initially Dr Hartley stated that for conic fitting it was undesirable to minimize the
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algebraic distance, but he then went on to say that this would be somehow good
for the fitting of the fundamental matrix. I believe that this is a contradiction.
The fundamental matrix is a quadratic surface in the four-dimensional space of the
image coordinates: x, y in the first image, x, y in the second image, making a four-
dimensional space. Thus if minimizing the algebraic distance produces poor results
in conic fitting, it will certainly produce poor results for fitting the fundamental
matrix.

To explain why such apparently good results are obtained, consider something that
Takeo Kanade said earlier: that the affine camera was appropriate for many image
pairs. In this case there is a linear relationship between the four image coordinates
in the two images, and minimizing the algebraic distance for the centred and scaled
coordinate system is the same as minimizing the geometric distance (as explained by
Larry Shapiro in his book), which explains these good results. Furthermore, if there
are significant perspective effects, such that the affine camera is not a good model,
then minimizing the algebraic distance is a bad thing and mediocre results will be
achieved. Has he any comments on this?

R. I. Hartley. The analogy between conic fitting and fundamental matrix esti-
mation is an interesting one. It is not quite an exact analogy, since in the case of
a conic the defining relationship expressed by the fundamental matrix is bilinear in
the two sets of indices, whereas in the case of a conic section the equation is an
arbitrary quadratic. Nevertheless, I am not sure that this makes a significant differ-
ence and I admit the apparent contradiction. However, I have not really tried these
techniques for conic fitting, and have no personal knowledge of how well they will
work. Perhaps this requires re-evaluation. For the fundamental matrix, they work
well. I do not think that it is a matter of being close to an affine approximation. The
algorithm was evaluated by using real images, as seen in figure 2 of the paper. Most
of the images have a large depth ratio, and the affine approximation is not tenable.
For the trifocal tensor estimation case, synthetic data were used for which the depth
of the point set was as much as 40% of the distance of the centre of the points to the
camera. For this case as well, the affine approximation is not valid, yet the algorithm
gives good results.

Perhaps a key to the success of the algebraic minimization method is that the
‘algebraic error’ function should be related to geometric error. For instance, in the
DLT resection case (§ 2 of my paper) it is shown that the algebraic and geometric
error differ only by the factor ww′. Since w and w′ are proportional to the depth of
points from the camera centre, this means that algebraic error is geometric image
error weighted by depth, and hence is closely related to error in position of the 3D
points. Thus in this case, algebraic error is closely related to meaningful geometric
error, which would explain the good results obtained. Possibly something similar
happens in the case of the other estimation problems. Conversely, for some problems
it must be possible to formulate the equations in such a way that the ‘algebraic
error’ that arises has no close relationship to geometric error, in which case one
would expect poor results.

A. Fitzgibbon (Department of Engineering, University of Oxford, UK ). Almost an
implementation detail, but often very important. How are the epipoles parametrized?

R. I. Hartley. I parametrize each epipole by its three homogeneous coordinates,
rather than by using the minimum parametrization with just two coordinates. This
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has the advantage that one need not worry about epipoles close to infinity, for which
the third coordinate is close to zero and non-homogeneous coordinates are unstable.
In particular it is possible during iteration for the epipole to pass smoothly through
infinity and swap from one side of the image to the other, which would not be possible
if non-homogeneous coordinates (two per epipole) are used.

A. Fitzgibbon. So the epipole is allowed to float.

R. I. Hartley. Yes, but I do try to keep each epipole close to having norm 1 by
renormalizing it at the end of each iteration of the Levenberg–Marquardt algorithm.
This probably has minimal effect, but keeps the coordinates from becoming too large.

There are a couple of other little tricks in the implementation that I’ve glossed over.
An important one concerns the error vector. The error vector Mf is only defined
up to sign, so you have to make sure that you consistently select the correct sign so
that the computed error vector varies as a continuous function of the parameters.
This may be done by choosing the sign so that the error has positive inner product
with the previously computed error vector. Otherwise, a small change of parameters
may cause a large change of error as the error vector swaps sign, as an artifact of
the SVD or other numeric procedures.

S. Carlsson (KTH, Stockholm, Sweden). When one tries to estimate conics, it is
generally known that unless a large proportion of the conic is covered it will fail.
Is there something similar here in the fundamental matrix? Is there some kind of
maximum angular spread of the points?

R. I. Hartley. I think that the failure modes for fundamental matrix computation
are best understood in terms of the critical sets for its calculation: there is ambiguity
precisely when the set of points and the two camera matrices lie on a quadric surface
in space. This includes the case of degenerate quadrics, such as a pair of intersect-
ing planes. For configurations close to a critical configuration, the extraction of the
fundamental matrix will be poorly conditioned.

P. H. S. Torr. Actually, the ‘angular spread’ of the points to which Stefan Carlsson
refers, corresponds to the spread of points observed in the image together with the
distance that they move between images, i.e. the amount of variation of the x, y, x′
and y′ coordinates. If the points are imaged over many different depths and over a
wide baseline, then this will lead to large perspective effects. In the situation without
these effects, all that can be estimated is the affine camera, which is a linear version
of the fundamental matrix. This last situation is directly analogous to the situation
to which Stefan alluded, where a conic cannot be well estimated.

R. I. Hartley. I think that Phil has hit the nail on the head here. One may also note
the distinction between computation of the fundamental matrix and determination
of the configuration of the cameras relative to the points. Consider the case where a
camera rotates, and also makes a very small (but non-zero) motion relative to the set
of points being imaged. In this case, the two images differ by a planar projectivity,
plus a small correction occasioned by the motion of the camera. This may be too small
to measure accurately. In this case, one can characterize the camera rotation, and
correctly infer that the motion of the camera is insignificant, at least on the scale of
the points being imaged. However, if one wishes to compute the fundamental matrix,
one is out of luck completely. It is notable in this case that with more than 8 points,
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the two camera centres and the points need not lie on or close to a quadric (critical)
surface, which means that critical surface configurations are not the only ones that
can cause instabilities of the fundamental matrix.

In these cases, as with the conic computation, the problem is not with a choice
of minimizing algebraic or geometric error to compute the matrix, rather that the
problem instance itself is not well conditioned.

O. Faugeras (INRIA, France). Has Dr Hartley experienced any problem in the
estimation of the trifocal tensor in the case where the three optical centres are in a
line?

R. I. Hartley. I’ve never actually tried it, not explicitly, no.

J. Lasenby (Department of Engineering, University of Cambridge, UK ). Has Dr
Hartley had any problems in the trifocal tensor in calculating the epipoles? They are
defined as the null vector, but the matrix might not have a determinant of zero.

R. I. Hartley. I haven’t had a problem. Naturally, one computes the null vector
in a least-squares sense as the singular vector corresponding to the smallest singular
value. One expects problems only when the smallest and next-smallest singular values
are close to being equal. This may occur either as a result of extreme noise distortion,
or because the matrix actually has rank 1. Even then, there is a safety belt, since
the epipole is computed as the common perpendicular to the nullspaces of the three
cross-sections of the trifocal tensor (see proposition 4.1 of my paper). If one of the
nullspaces is not well defined, then the other two still serve to define the epipole.

However, in a straight linear method for computing the camera matrices from the
trifocal tensor, it is estimating the epipoles that is definitely the weak point of the
algorithm. That is why, to get the best results, I then iterate, moving the epipoles to
try to minimize the total error. This provides added robustness in cases where the
epipoles are not stable.
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